
meaningfulness and invariance 

meaningfulness and invariance. Few disavow the principle 
that scientific propositions should be meaningful in the sense 
of asserting something that is verifiable or  falsifiable about the 
qualitative, empirical situation under discussion. What makes 
this principle tricky to apply in practice is that much of what 
is said is formulated not as  simple assertions about empirical 
events - such as a certain object sinks when placed in water - 
but as laws formulated in rather abstract, often mathematical, 
terms. It is not always apparent exactly what class of 
qualitative observations corresponds to such (often numerical) 



meaningfulness and invariance 

laws. Theories of meaningfulness are methods for investigating 
such matters, and invariance concepts are their primary tools. 

The problem of meaningfulness, which has been around 
since the inception of mathematical science in ancient times, 
has proved to be difficult and subtle; even today it has not 
been satisfactorily resolved. This entry surveys some of the 
current ideas about it and illustrates, through examples, some 
of its uses. The presentation requires some elementary 
technical concepts of measurement theory (such as representa- 
tion, scale type, etc.), which are explained in MEASUREMENT, 
THEORY OF. 

INTUITIVE FORMULATION A N D  EXAMPLES 

The following example, taken from Suppes and Zinnes (1963), 
nicely illustrates part of the problem in a very elementary way. 
Which of the following four sentences are meaningful? 

(1) Stendhal weighed 150 on 2 September 1839. 
(2) The ratio of Stendhal's weight to Jane Austen's on 3 

July 1814 was 1.42. 
(3) The ratio of the maximum temperature today to the 

maximum temperature yesterday is 1.10. 
(4) The ratio of the difference between today's and 

yesterday's maximum temperature to the difference between 
today's and tomorrow's maximum temperature will be 0.95. 
Suppose that weight is measured in terms of the ratio scale W 
(which includes among its representations the pound and 
kilogram representations and all those obtained by just a 
change of unit) and that temperature is measured by the 
interval scale F (which includes the Fahrenheit and Celsius 
representations). Then Statement (2) is meaningful, since with 
respect to each representation in W it says the same thing, i.e., 
its truth value is the same no matter which representation in 
W is used to measure weight. That is not true for Statement 
(I), because (I) is true for exactly one representation in W and 
false for all of the rest. Thus we say that (1) is 'meaningless'. 
Similarly, (4) is meaningful with respect to F, but (3) is not. 

The somewhat intuitive concept of meaningfulness suggested 
by these examples is usually stated as follows: Suppose a 
qualitative or empirical attribute is measured by a scale Y .  
Then a numerical statement involving values of the 
representation is said to be meaningful if and only if its truth 
(or falsity) is constant no matter which representation in Y is 
used to assign numbers to the attribute. There are obvious 
formal difficulties with this definition, for example the concept 
of 'numerical statement' is not a precise one. More seriously, it 
is unclear under what conditions this is the 'right definition' of 
meaningfulness, for it does not always lead to correct results in 
some well-understood and non-controversial situations. Nev- 
ertheless, it is the concept most frequently employed in the 
literature, and invoking it often provides insight into the 
correct way of handling a quantitative situation - as the 
following still elementary but somewhat less obvious example 
shows. 

Consider a situation where M persons rate N objects (e.g. M 
judges judging N contestants in a sporting event). For sim- 
plicity, assume person i rates objects according to the ratio scale 
8,. The problem is to find an ordering on the N objects that 
aggregates in a reasonable way the persons' judgements. It will 
be assumed that their judgements cannot be coordinated in such 
a way that, for R, in 9, and R, in 3,  meaning can be given to 
the assertion R, = R,. (The difficulties underlying such a coordi- 
nation are essentially those that arise in attempting to compare 
individual utility functions. The latter problem-'the inter- 
personal comparison of utilities' - has been much discussed in 
the literature, as for example in Narens and Luce (1983) and 

Sen (1979). It is generally conceived that there are great, if not 
insurmountable, difficulties in carrying out such comparisons.) 
Any rule that does not involve coordination can be formulated 
as follows: First, it is a function F that assigns to an object the 
value F(r, , . . . , r,) whenever person i assigns the number r, to 
the object. Second, object a is ranked just as high as b if and 
only if the value assigned by F to a is at least as great as that 
assigned by F to b. In practice F is often taken to be the 
arithmetic mean of the ratings r , ,  . . . , r, (e.g. Pickering et a]., 
1973). Observe, however, that this choice of F, in general, 
produces a non-meaningful ranking of objects, as is shown in 
the following special case: Suppose M = 2 and, for i = 1,2, R, 
is person's i representation that is being used for generating 
ratings, and R,(a) = 2, R, (b) = 3, R,(a) = 3, and R,(b) = 1. 
Then the arithmetical mean of the ratings for a, 2.5, is greater 
than that for b, 2, and thus a is ranked above b. However, 
meaningfulness requires the same order if any other represent- 
ations of persons I and 2 rating scales are used, for example, 
]OR, and 2R,. But for this choice of representations, the 
arithmetic mean of a, 13, is less than that of b, 16, and thus b 
is ranked higher than a. It is easy to check that the geometrical 
mean, 

gives rise to a meaningful rule for ranking objects. It can be 
shown under plausible conditions that all other meaningful 
rules give rise to the same ranking as given by the geometric 
mean. 

More subtle applications of the above concept of meaning- 
fulness have been given, and the interested reader should 
consult Batchelder (1985) and Roberts (1985) for a wide range 
of social science examples. 

In some contexts, this concept of meaningfulness presents 
certain technical difficulties that require some modification in 
the definition of meaningfulness (e.g., see Roberts and Franke, 
1976, and Falmagne and Narens, 1983). 

THEORIES OF MEANINGFULNESS BASED O N  INVARIANCE 

The above approach to meaningfulness lacks a serious account 
as to why it is a good concept of meaningfulness; that is, it 
lacks a sound theory as to why it should yield correct results. 
Formulating a serious account is difficult. One tack (Krantz 
et a]., 1971; Luce, 1978; Narens, 1981) is to observe that if 
meaningfulness expresses valid qualitative relationships, then it 
must correspond to something purely qualitative, and 
therefore it should have a purely qualitative description. A 
long tradition in mathematics for formulating intrinsic 
qualitative relationships, one going back at least to 
19th-century geometry and the famous Erlanger Programme 
of Felix Klein, is to do so in terms of transformations that 
leave the situation invariant. Formally, let .% be the given 
qualitative situation (e.g. a relational structure), and K be a set 
of isomorphisms of % into itself. A qualitative relation 
R(x, , . . . , .r,) is said to be K-invariant if and only if for each 
x, ,  . . . ,x,  in the domain of % and each f in K, 

R(x ,,... ,x,) iff Rlf(x,), . . . .  f(x.11, 

In mathematics, 'intrinsic' has usually been associated with a 
special type of K-invariance, namely when K is the group 
(under function composition) of all isomorphisms of X onto 
itself. These isomorphisms are called automorphisms, and this 
type of invariance is called automorphism invariance. The 
automorphism group has many desirable mathematical 
properties, including, of course, that the primitive relations 
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that define the qualitative situation are all automorphism 
invariant. For measurement, it often seems appropriate to use 
the larger set of all isomorphisms of I into itself, the 1-1 
endomorphisms. The resulting invariance is called 
endomorphism invariance. One theory of meaningfulness 
identifies qualitative meaningfulness with automorphism 
invariance, and another identifies it with endomorphism 
invariance. Both are based on structure preserving concepts 
and so relate readily to measurement concerns, since 
measurement, at least theoretically, is based upon related 
structure preserving concepts. Although little philosophical 
justification exists for either of these concepts, they, and 
especially automorphism meaningfulness, appear to lead to 
many correct results. For example, automorphism meaningful- 
ness provides a basis of dimensional analysis (as described 
below). Under these theories, quantitative forms of meaning- 
fulness result from forming images of qualitative meaningful 
relations by proper means of measurement. 

DIMENSIONAL ANALYSIS 

In at least four areas of science invariance ideas of 
meaningfulness have played a fundamental and major role: 
dimensional analysis in classical physics, the question of 
meaningful statistical assertions, relativistic physics, and 
mathematics (especially geometry). Since some applications of 
the first two have been to economics and other social sciences 
(de Jong, 1967; Roberts 1985), a brief summary of their main 
ideas is provided. 

Dimensional analysis involves two major concepts: a 
structure of physical variables - those quantities for which 
units can be specified - represented as a finite dimensional, 
multiplicative vector space, and the assumption that any 
physical law that can be formulated as a relation among 
variables and constants represented in this space must satisfy 
an invariance property, called 'dimensional invariance', which 
is described below. When fully articulated, these two 
propositions imply Buckingham's (1914) theorem: any such 
law can be expressed as a function of one or more 
dimensionless quantities (i.e. real numbers), each of which is a 
product of powers of some of the variables involved. 

Typical applications. Accepting for the moment the correctness 
of these two major premises of dimensional analysis, consider 
how they may be used. Without question, the simplest and 
most widespread use is to check an equation for dimensional 
consistency. Only quantities with the same dimensions can be 
added or set equal to one another. An equation failing this 
property simply cannot describe anything of empirical 
significance if dimensional invariance is a valid property of 
physical laws. For a discussion with some economic examples, 
see Osborne (1978). Most scientists have employed such checks 
whether or not they are aware of dimensional analysis. 

There is, in addition, a much more powerful application of 
the method. Suppose a process or system is sufficiently well 
understood so that all of the relevant variables are known. 
This is a very strong assumption, one we are often unsure of, 
especially in incompletely developed areas of science. It is, 
however, met in physical situations when we have a full 
understanding of the laws at work but are, none the less, 
unable to solve the resulting equations. In such cases, by using 
elementary methods of linear algebra, it is possible systemati- 
cally to develop a set of independent dimensionless 
combinations of the relevant variables. In that case, 
Buckingham's theorem tells us that the law is some unspecified 
function of these dimensionless quantities. If one of the 

variables of the system is viewed as the dependent one and if it 
appears in just one of the dimensionless combinations, then it 
can be solved for. This results in an expression for the 
dependent variable that is a product of powers of the other 
variables in that dimensionless combination times an 
unspecified function of all the other dimensionless quantities. 
For example, as has been shown in a number of books on the 
subject, it is easy to derive from dimensional considerations 
that the lift and drag of an idealized airfoil must be 
proportional to the square of the velocity, to the density of the 
air, to the area of the airfoil, to an explicit function of the 
angle of attack, and to an unknown function of a 
dimensionless quantity called the 'Reynolds' number'. Many 
other examples of the effective use of these techniques are 
routinely found in texts on engineering and applied physics 
(e.g. Sedov, 1959). 

Constructing the dimensional strucrure. In order to understand 
the method well enough to see how applicable it may be 
beyond physics, two issues need to be addressed: where does 
the vector space representation come from, and why should we 
postulate that laws are dimensionally invariant? The latter 
question has attracted more attention than the former, 
although the concept of dimensional invariance becomes 
rather transparent once the qualitative underpinnings of the 
structure of quantities are worked out. 

The basic tying together of the dimensions of classical 
physics are measurement structures involving triples of 
interrelated attributes. These consist of a conjoint structure, 
say (A x P, k), that has at least one operation on either A, P, 
or A x P such that it together with the ordering induced on that 
component by 2 forms a positive concatenation structure with 
a ratio scale representation. Further, the operation and conjoint 
structure are interconnected by a qualitative distribution law. 
For example, if the operation o is on A, then it is said to be 
distributive if, for a, 6, c, d in A and p, q in P, whenever 
( 0 , ~ )  -- (c, q) and -- (d, q), then (a o 6 . ~ ) -  (c o d, 9). 
(This definition was given independently by Narens and Luce 
(1976) and Ramsay (1976)) For example, if A represents a set 
of masses and P a set of velocities and the ordering is by the 
amount of kinetic energy, then the usual concatenation oper- 
ation for masses is distributive in this triple. Under plausible 
solvability and Archimedean conditions, it can be shown 
(Narens and Luce, 1976; Luce and Narens, 1985; Narens, 1985) 
that the conjoint ordering has a representation in terms of 
products of powers of the ratio scale representations of the 
operations. This fact is reflected in the ordinary pattern of units 
as products of powers of others, for example the unit of energy 
is gm2/t2. The laws captured by these distributive triples are the 
most elementary ones that relate several dimensions. 

If there are sufficiently many of these distributive triples and 
if they are sufficiently redundant so that there is a finite basis 
to the structure, then they can be simultaneously represented 
numerically as a finite dimensional, multiplicative vector space 
(Krantz et al., 1971; Luce, 1978; Roberts, 1980). Three major 
things are used to accomplish this development: a theory of 
ratio scale representations of concatenation structures, a 
theory of representations of conjoint structures, and the 
qualitative concept of an operation being distributive in the 
conjoint structure. Most traditional accounts attempt to make 
do only with the first of these elements, usually for the special 
case of extensive structures, and as a result it is obscure where 
the rest of the structure comes from. 

Relation to meaning/iulness. It is plausible that laws formulated 
within this structure should be meaningful in the sense of 
invariance under automorphisms of the structure. By a 
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well-known theorem of mathematical logic, it can be shown 
that this is true of any law that can be defined through 
(first-order) predicate logic in terms of the primitive relations 
of the structure. Luce (1978; see also Roberts, 1980) showed 
that automorphism invariance is equivalent to the following 
numerical requirement known as dimensional invariance: 
suppose the numerical law admits a particular combination of 
values of the relevant variables as a possible configuration of 
the system in question - that is, these values satisfy the law 
governing the system. Suppose, further, that an admissible 
transformation is carried out on these values in the sense that 
separate admissible transformations are made on each basis 
variable of the multiplicative vector space and all other 
variables are transformed as prescribed by that space. Then, 
according to dimensional invariance, when the combination of 
values satisfying the law is subject to an admissible 
dimensional transformation of the sort described, the 
transformed values also satisfy the law. (Ramsay (1976), in 
essence, defined 'dimensional invariance' as automorphism 
invariance, and he showed that distribution of a bisymmetric 
operation is sufficient to ensure automorphism invariance. He 
did not, however, show that his conditions imply a 
multiplicative vector space of units or the product of powers 
representation. That means that he did not show that his 
conditions imply the usual concept of dimensional invariance 
that was described above.) 

There seems to be a wide consensus within the physical 
community that physical laws should be dimensionally 
invariant, although that community is not very clear - indeed, 
there is disagreement - as to why this is the case. Attempts 
have been made to argue for this property on a priori grounds 
and as a consequence of a concept of physical similarity 
(Buckingham, 1914; Bridgman, 1931; Causey, 1969; Luce, 
1971; Osborne, 1978), but none of these seem as satisfactory as 
arguing for it in terms of automorphism invariance, which 
appears to be a more fundamental concept, one that is stated 
in purely qualitative terms. Thus, it seems to the authors that 
equivalence to automorphism invariance provides a more 
rigorous and better foundation for dimensional analysis than 
do the ones customarily given by physicists and engineers. 

Extension beyond classical physics. The current theories for 
dimensional analysis fail to account adequately for measure- 
ments of either relativistic or quantum quantities. For 
example, at the representational level, relativistic velocity 
seems to work perfectly well since it continues to be distance 
divided by time, but because it is a bounded structure and its 
'addition' operation is not distributive in the conjoint structure 
relating distance, velocity, and duration, the existing theorems 
do not account for why it can be included in the overall 
dimensional structure. The variables of quantum theory are far 
more perplexing, and little has been done to incorporate them 
in such a structure. 

A question of natural interest to economists is whether 
dimensional methods are applicable to their sort of problems. 
An attempt to show that they are is given in de Jong (1967) 
and Osborne (1978) (also, see Roberts, 1985). Certainly there 
are some uses, such as the verification of dimensional 
consistency of equations. What seems to be lacking in the 
economic situation, however, is a sufficiently rich set of 
elementary laws of the type captured as distributive triples in 
order to set up a full vector space of dimensions like the one 
found in physics. A similar observation holds for other areas 
such as psychophysics, which is perhaps as close as any other 
to creating such a structure. It appears that additional basic 
work on these measurement questions is needed before it will 

be possible to bring to bear the full power of these highly 
useful methods to economics. 

Input-output functions. A part of the theory, however, has 
proved to be promising for both economic and other social 
science concerns. This involves laws that describe input4utput 
relations among variables of known scale types. In these cases, 
dimensional invariance simply says that the function relating 
them must have the following homogeneity property: The 
effect of admissible scale transformations on the input 
(independent) variables results in an admissible transformation 
on the output (dependent) variable. Such a homogeneity 
condition imposes severe restrictions on the form of the 
function when all of the input variables are dimensionally 
independent and even when they are all constrained to have 
the same dimension (Falmagne and Narens, 1983; Luce, 1959) 
For example, if there is just one ratio scale input, a ratio scale 
output, and a strictly increasing output function, then the 
function must be proportional to a power of the independent 
variable; if the output is an interval scale, then logarithmic 
functions can also arise. Such limitations have proved effective 
in some psychological applications (Luce, 1959; Osborne, 
1970, 1976; Iverson and Pavel, 1981; Falmagne, 1985; Roberts, 
1985), and they constitute a substantial part of de Jong's 
(1967) book. 

It must be recognized, however, that they really are a 
presumed application of dimensional analysis in areas that do 
not have enough structure to justify its use, that is, 
dimensional invariance is assumed for these special cases 
without having a theory as to why this should be so. 
Moreover, one of two very strong assumptions is involved, 
namely that either all of the independent variables are 
dimensionally independent or they all have the same 
dimension. 

MEANINGFULNESS AND STATISTICS 

Another area of importance to social scientists in which 
invariance notions are believed to be relevant is the application 
of statistics to numerical data. The role of measurement 
considerations in statistics and of invariance under admissible 
scale transformations was first emphasized by Stevens (1946, 
1951); this view quickly became popularized in numerous 
textbooks, and it resulted in extensive debates in the literature. 
Continued disagreement exists, mainly created by confusion 
arising from the following simple facts: measurement scales are 
characterized by groups of admissible transformations of the 
real numbers. Statistical distributions exhibit certain 
invariances under appropriate transformation groups, often 
the same groups (especially the affine transformations) that 
arise from measurement considerations. Because of this, some 
have concluded that the suitability of a statistical test is 
determined in part by whether or not the measurement and 
distribution groups are the same. Thus, it is said that one may 
be able to apply a test, such as a I-test, that rests on the 
Gaussian distribution to ratio or interval scale data, but surely 
not to ordinal data, because the Gaussian is invariant under 
the group of affine transformations - which arises in both the 
ratio and interval case but not in the ordinal one. Neither half 
of the assertion is correct: first, a significance test should be 
applied only when its distributional assumptions are met, and 
they may very well hold for some particular representation of 
ordinal data. And, second, a specific distributional assumption 
may well not be met by data arising from ratio scale 
measurement. For example, reaction times, being times, are 
measured on a ratio scale, but they are rarely well 
approximated by a Gaussian distribution. 
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What is true, however, is that any proposition (hypothesis) 
that one plans to put to statistical test or to use in estimation 
had better be meaningful with respect to the scale used for the 
measurements. In general, it is not meanirlgful to assert that 
two means are equal when the quantities are measured by an 
ordinal scale, because equality of means is not invariant under 
strictly increasing transformations. Thus, no matter what 
distribution holds and no matter what test is performed, the 
result may not be meaningful because the hypothesis is not. In 
particular, if an hypothesis is about the measurement structure 
itself, for example that the representation is additive over a 
concatenation operation, then it is essential that the hypothesis 
be automorphism invariant and that, moreover, the hypothe- 
ses of the statistical test be met without going outside the 
transformations of the measurement representation. 

Lours NARENS AND R. DUNCAN LUCE 
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